

Experiment:- 2

Student Name: Branch: CSE Semester: 5th Subject Code: 20CSP-317 Subject Name: MACHINE LEARNING LAB UID: Section/Group: Date of Performance:

Aim/Overview of the practical:

Implement Data Visualization.

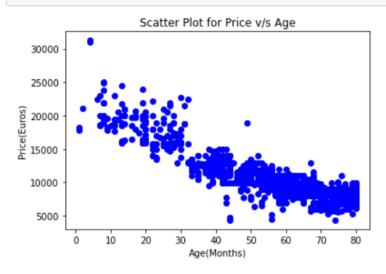
Task to be done:

To perform Data Visualization on any standard dataset.

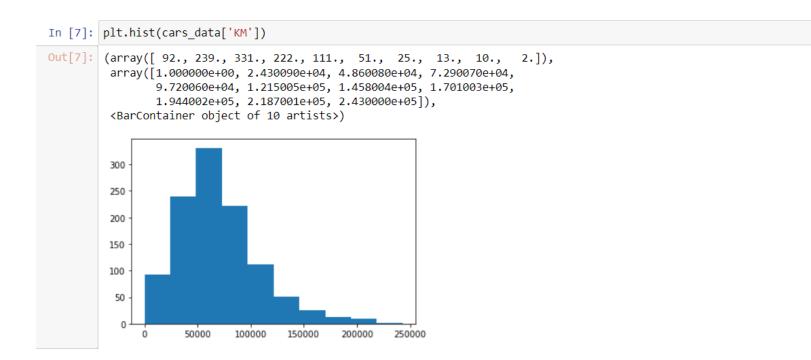
Apparatus/Simulator used:

- Jupyter Notebook/Google Collab
- Python
- pandas Library
- seaborn Library
- Standard Dataset

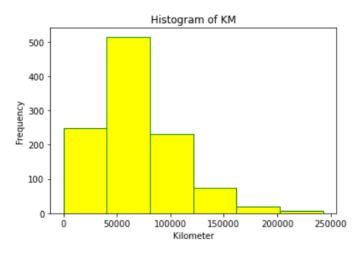
Code and Output:

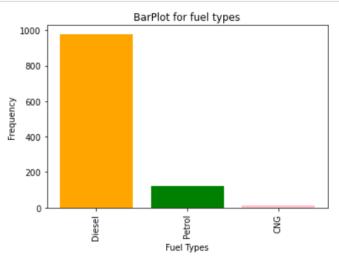

1]:	<pre>import pandas as pd import numpy as np import matplotlib.pyplot as plt</pre>										
]:	cars_	data=p	d.rea	ad_csv('	Toyota.cs	sv',in	ndex_col=	0,na_valu	es=["	??","?	;;;"])
3]:	cars_	data									
3]:		Price	Age	КМ	FuelType	HP	MetColor	Automatic	сс	Doors	Weight
	0	13500	23.0	46986.0	Diesel	90.0	1.0	0	2000	three	1165
	1	13750	23.0	72937.0	Diesel	90.0	1.0	0	2000	3	1165
	2	13950	24.0	41711.0	Diesel	90.0	NaN	0	2000	3	1165
	3	14950	26.0	48000.0	Diesel	90.0	0.0	0	2000	3	1165

2	13950	24.0	41711.0	Diesel	90.0	NaN	0	2000	3	1165
3	14950	26.0	48000.0	Diesel	90.0	0.0	0	2000	3	1165
4	13750	30.0	38500.0	Diesel	90.0	0.0	0	2000	3	1170
1431	7500	NaN	20544.0	Petrol	86.0	1.0	0	1300	3	1025
1432	10845	72.0	NaN	Petrol	86.0	0.0	0	1300	3	1015
1433	8500	NaN	17016.0	Petrol	86.0	0.0	0	1300	3	1015
1434	7250	70.0	NaN	NaN	86.0	1.0	0	1300	3	1015
1435	6950	76.0	1.0	Petrol	110.0	0.0	0	1600	5	1114


1436 rows × 10 columns

In [6]: plt.scatter(cars_data['Age'],cars_data['Price'],c='blue')
 plt.title('Scatter Plot for Price v/s Age')
 plt.xlabel("Age(Months)")
 plt.ylabel("Price(Euros)")
 plt.show()

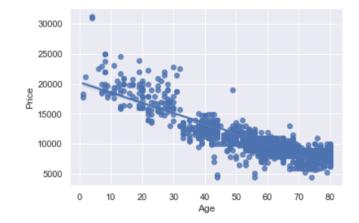

Plotted Histogram

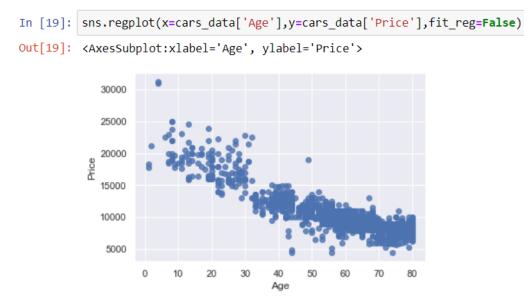



```
In [9]: plt.hist(cars_data['KM'],color='yellow',edgecolor='green',bins=6)
plt.title('Histogram of KM')
plt.xlabel('Kilometer')
plt.ylabel('Frequency')
```

Out[9]: Text(0, 0.5, 'Frequency')

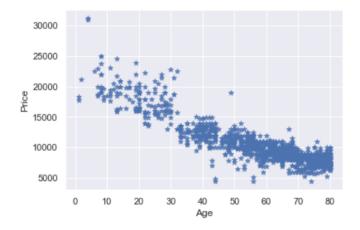
In [15]: plt.bar(index,counts,color=['orange','green','pink'])
 plt.title('BarPlot for fuel types')
 plt.xlabel('Fuel Types')
 plt.ylabel('Frequency')
 plt.xticks(index,FuelType,rotation=90)
 plt.show()






```
In [17]: sns.set(style='darkgrid')
```

- In [18]: sns.regplot(x=cars_data['Age'],y=cars_data['Price'])
- Out[18]: <AxesSubplot:xlabel='Age', ylabel='Price'>

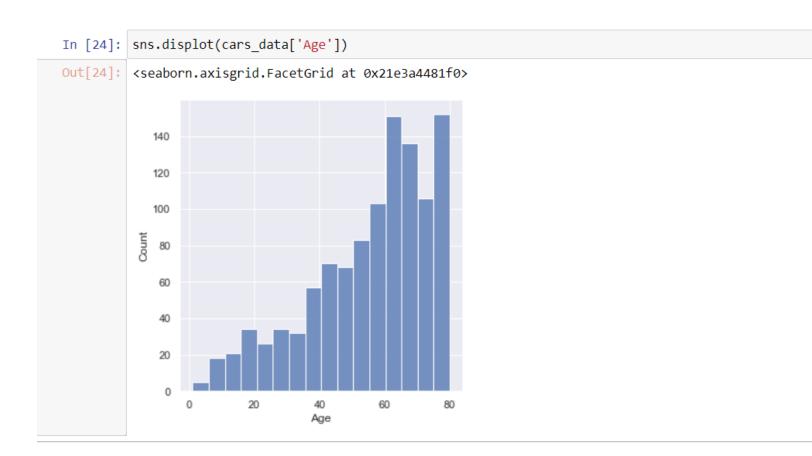

To remove the regression line we have to make it false as its default value is true.

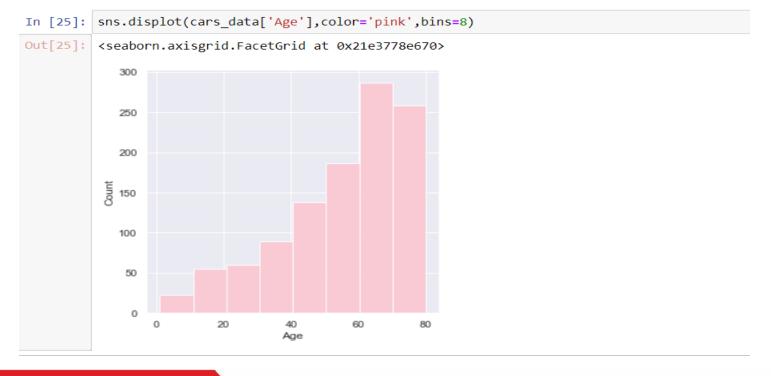
In [20]: sns.regplot(x=cars_data['Age'],y=cars_data['Price'],fit_reg=False,marker="*")

Out[20]: <AxesSubplot:xlabel='Age', ylabel='Price'>

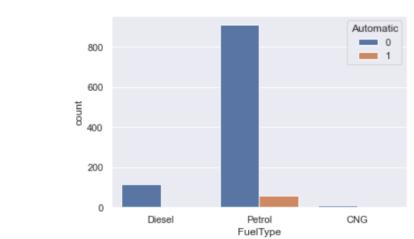
5000

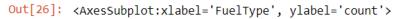
0

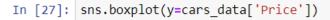

20

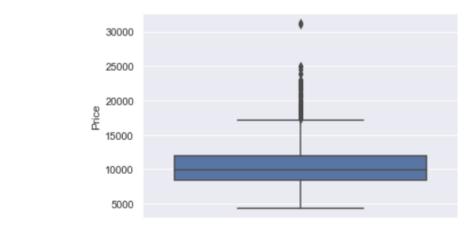

40

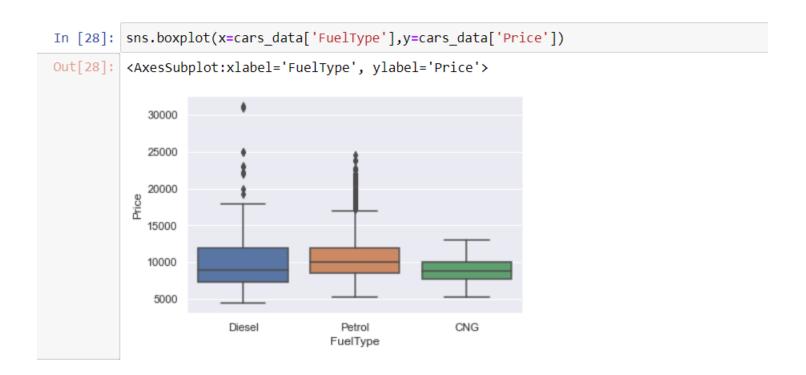
Age

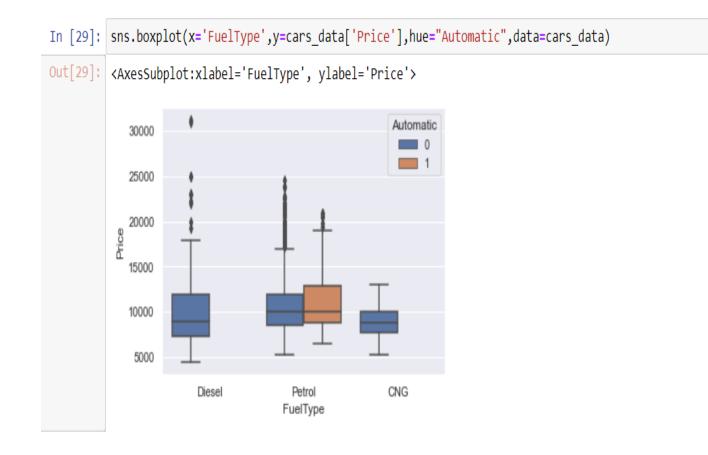

60


80

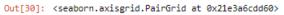


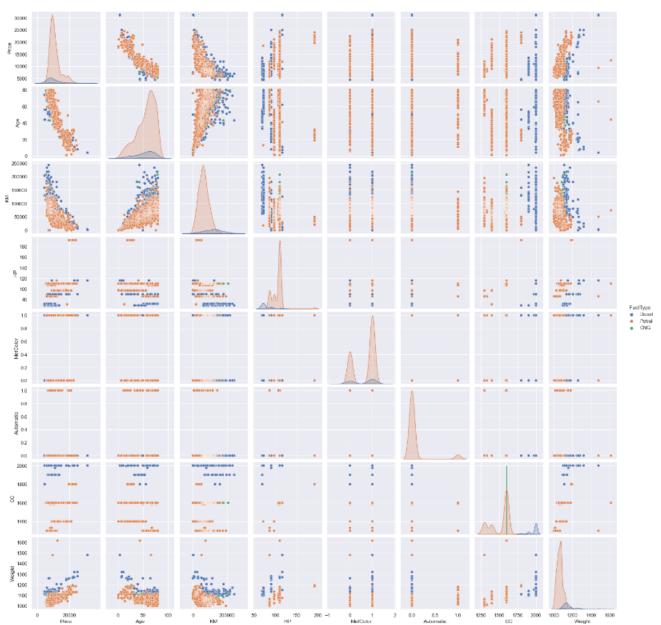







```
Out[27]: <AxesSubplot:ylabel='Price'>
```



Learning outcomes (What I have learnt):

- 1. To understand Data Visualization.
- 2. Learn about pandas', matplotlib and seaborn library/package ofpython.
- 3. Learn about the different methods/functions that are needed togenerate different types of graphs, charts and plots of the given dataset.
- 4. Leaned about regression line, KDE.

Evaluation Grid (To be created as per the SOP and Assessment guidelines by the faculty):

Parameters	Marks Obtained	Maximum Marks			

